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On Computability of Decaying and Nondecaying
States in Quantum Systems with Cantor Spectra

I. Antoniou %4 and Z. Suchaneck#?

Received June 30, 2003

We study Hamiltonians with singular spectra of Cantor type with a constant ratio of
dissection. The decay properties of the states in such systems depend on the nature of
the dissection rate that can be characterized in terms of the algebraic number theory. We
show that in spite of simplicity of the considered model the computational modeling of
nondecaying states is in general impossible.
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1. INTRODUCTION

Singular spectra were regarded for a long time as “unphysical” and neglected.
This situation has changed dramatically in the last decades. Nowadays it is easy
to find genuine “physical” systems for which singular spectra not only appear
but they are even generic (Antoni@t al, 1998, 1999; Antoniou and Shkarin,
2001; Antoniou and Suchanecki, 2000; Avron and Simon, 1981a,b; Bellisard,
1982; Damanilet al., 2000; del Ricet al., 1994; Jitomirskaya and Simon, 1994;
Pearson, 1978). The simplest of them are Cantor-like (or fractal) sets which we
study in this paper. Cantor-type sets are easier tractable than the other singular sets.
There is a simple recursive procedure of the construction of Cantor sets and many
theoretical results about their nature. Cantor spectra in spite of their simplicity
exhibit, however, all the complexity of the behavior of quantum systems with
singular spectra and the property of decay in particular.
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The decay of a quantum system depends on the nature of its spectrum. If the
Hamiltonian has point spectrum then each state is nondecaying. On the other hand
an easy consequence of the Radon—Nikodym theorem is that if the Hamiltonian
has an absolutely continuous spectrum then each state is decaying (Weidmann,
1980). If the Hamiltonian consists of both point and absolutely continuous
spectrum then the underlying Hilbert space can be decomposed as a direct sum of
two Hilbert spaces. Each of these spaces reduces the Hamiltonian and one of them
consists only of decaying states while the other only of nondecaying. However,
the spectrum of an arbitrary Hamiltonian does not necessarily consist of these
two parts only. Hamiltonian systems with singular continuous spectra may have
both decaying and nondecaying states. As we have shown recently (Antoniou and
Shkarin, 2001; Antoniou and Suchanecki, 2000) the Hilbert space of an arbitrary
HamiltonianH can also be decomposed on two parts, which rediicim such a
way that one Hilbert space consists of decaying states and the other of nondecay-
ing. The division line between decaying and nondecaying states goes through the
singular part of the spectrum, which means that singular spectra may behave like
point spectra but may also behave as absolutely continuous spectra.

In this paper we restrict our study to the simplest class of singular spectra.
We study Cantor-type sets with constant ratio of dissection (Salem, 1983), which
provide constructive examples of fractal spectra and show strict connections with
algebraic number theory. It is therefore surprising to learn that the possibility to
construct nondecaying states in such systems is only theoretical. We clarify this
point below. First, however, let us recall the basic notions and facts.

The pure states of a quantum mechanical system are wave functions regarded
as elements of a separable Hilbert spaci the von Neumann formulation (Von
Neumann, 1955) of quantum mechanics. The time evolution of a wave function
Y € ‘H is governed by the unitary group

UI =e_itH, t ER,
onH, which is the solution of the Schroedinger equation

The HamiltonianH is a self-adjoint operator oH.
A (pure) state) € H is called adecaying statéits survival amplitudelecays
asymptoticallyt — oo

(¥, Upyr) = /R e"Md(y, E,y) — 0,

where{E, } is the spectral family o . Thesurvival probabilityi.e., the probability
that at timet the state/ has not yet decayed is

p(t) £ [(¥, Uiy) 2.
For any given state) € H we denote byF (1) the spectral distribution



Computability of Decaying and Nondecaying States in Quantum Systems 2257

function:
FA) = (¥, Exy), for 1 eR.
Itcan be shown (Weidmann, 1980) that each statan be uniquely decomposed as

'ﬂ = 1//p‘|"1”sc‘|‘ 1pac

in such a way that the corresponding spectral distribution fundfgrfs,, and

Fac is discrete, singular, and absolutely continuous respectively. Obvigsiy
nondecaying ang,c is decaying. It turns out that the singular continuous state
Y¥sc can be uniquely decomposed further as a sum of two states such that one is
nondecaying and the other decaying (Antoniou and Shkarin, 2001; Antoniou and
Suchanecki; 2000). In fact the whole Hilbert space can be decomposed as a direct
sum of two closed subspaces

H =H° @ H\P,

called decaying and no-decaying space respectively. Moreover the $p2cesl
HNP reduce the Hamiltonian operatiir, which means that the spectral properties
of H can be studied separately and independently on these subspaces.
The decaying states can also be characterized in terms of their spectral mea-
sures as follows:

Proposition1. Suppose that the spectral measurnehich corresponds to a state
¥ € H consists only of the singular continuous component and that the support
of 1 is bounded. Let

My = Mi(¢) = inf{A : A € suppu} and My = My(¥) = sugi : A € suppu}.
The necessary and sufficient conditionfoto be a decaying state is that for each
a,b,0<a<b< My— My, holds

. b
im [ an (0 - M) ) = P (1)

where x4 p(A) denotes the characteristic function of the interjal b] repeated
mod (M, — M3), i.e., the indicator of the set

U2+ k(M2 = My), b+ k(Mz — My)].
keZ

Proof: Let us introduce the linear transformatign [0, 27] — [My, M3]

1

M, — M
p(X) = ———Lx + M.
2
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Since the support gf is contained in My, M5]

00 ¢(2m)
/_ Xan(NG: — MD)a(d2) = /¢ st~ M)aFG)

oo

27
= [ asnio0) — M) GF@GY. @
whereF is the spectral distribution function gf. However

xab(N(@(X) — M1)) = xa p(Nh),
27Tb

wherea’ = MZ”a b = N . Applying to the right-hand side of (2) Theorem
XIl, 10.5 of Zygmund (1968) we see that the integral converges to

T IR0 — FOON) = 1o (F(M:) = F(My)
b—a
= W(F(OO) — F(=00))
_ b-a 2
= mlllﬂll
if and only if
2r
lim / " dF(¢ (1)) = 0. (3)
n—o0 0
However

2rinMy

g M -1 M2 2rini
e'mdF(qﬁ(?»)):/ en? (x)dF(A):e_W/ eVz-vi dF().
My M,

Replacingn in (3) by Mz-M: M1 n and applying (Zygmund 1968) XII, Theorem 10.11
we obtain that

Mz .
lim / e"dF()) =
n—oo My
if and only if (1) holds.

If the support ofu in the above proposition is unbounded then the necessary
and sufficient condition foty to be a decaying state is

I, (4)

n—o0o

M2
lim /M o (G- = M) (0) = 1 —me-

for arbitrary —oo < M; < My < o0 and O< a<b< My — Mj. Indeed, the
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condition is necessary sinceyf is a decaying state then
0 .
lim / g*dF(x) =0
t—o0 00

Therefore, by Lemma 2 of Antoniou and Shkarin (2001) the measure corresponding
to 1;m,,—m,) (A)dF(1) is decaying, so we can apply (1). Conversely, for a given0
we can find suctM; andM, thatu(R\[M1 — M,]) < e. By the assumption there
is anN such that|f'v|2 e u(dr)| < e, fort > N. Thus| /% €Y u(dA)| < 2¢
which shows that condition (4) is also sufficient.
Smgular spectra may already appear in Hamiltonian systems of the form

dx2 + V, where the potentidl is an almost periodic function or even wh¥ris
a uniform limit of periodic functions. Each period in the potential creates a gap in
the spectrum. In result the spectrum of such an operator is in general a Cantor-type
set. O

A vast literature has been devoted to study of the classes of potentials that
lead to singular spectra (see, for example, Avron and Simon, 1981a,b; Bellisard,
1982, and references therein). We shall not review these important results here.
Instead, given a Hamiltonian with a specified singular spectrum, we shall study
its properties. Let us, therefore, show first how to correspond a Hamiltonian to a
given spectrum. Suppose that the required specirisra Borel subset dR and a
measurer, which we would like to regard as a spectral measure, is a Borel measure
ono. In the spectral representation, the Hamiltonian with spectral measisre
the multiplication operator

Hf() =Af(L) (5)
on the Hilbert spac&?(o, 1). The spectral projector, of H are

f(x), 0<A'<a

E,f()) =
10 0, otherwise

The spectral measure(di) = dF(1) corresponds to the distribution functién
associated with the cyclic vectgr = 1.

F() =W Ey). (6)

We introduce now an important class of Cantor-type sets which will serve
as the supports of singular measures. To simplify the notation, we restrict our
considerations to the intervah,[b]. Let r be a real number, 8 r < % In the
first step divide the intervalg] b] into three parts of the lengths proportional
tor,1— 2r, andr respectively. Then remove the middle open interval. In the
second step divide each of two remaining intervals into three parts of lengths
also proportional t@, 1 — 2r, andr respectively. Then remove then middle open
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intervals, and so on. In this way we obtain in #ik step a closed sef consisting
of 2 disjoint intervals, each one of the length-¢ a)r¥. Denotes = Nyoy and
observe that is a closed set with points of the form

x=a+(b—a)(1—r)iskrk‘l, (7)
k=1

wheregx = 0 or 1. Cantor’s ternary set on the interval [0, 1] with points-
2721 5. is obtained by putting = 0,b = 1, andr = : _

Let us focus our attention on Cantor-type sets on the intervalPy2th a
constant ratio of dissection. Therefore each priato has the form

x=2r(1-r) igkrk—l. (8)
k=1

On the set define the distribution functioR putting for the pointx of the form
8

F(x):Z%.

k=1
We extendF on [0, 27] putting

F(x) = ysgg F(y).

The functionF is nondecreasing and continuous wkh(x) = 0 for almost all
x € [0, 2] therefore singular.

According to the above prescription we can define a Hamiltonian system on
the Hilbert spacé of all functions f such that/, | f (x)|2dF(x) < oo putting as
H the multiplication operator.

It is easy to see that the functiostéte i = 1 is a cyclic vector foH, i.e.,
the set of all finite linear combinations &f"y,n =0, 1, 2, ..., is dense irfH.
Therefore, the operatdt, considered as a Hamiltonian &ty has purely singular
continuous spectrum.

We would like to know whether the constructed in the previous section cyclic
stateyr = ¥ (r) is decaying. It turns out that the decayypfdepends on the ratio
of dissection. In Antoniou and Suchanecki (2002) we have given the full answer
to this question describing the algebraic properties of the ratio of dissectia
decide about the decay properties of the correspondinggtatée present below
the algebraic characterization of decaying states associated with the Cantor-type
sets with a constant ratio of dissection. First, however, recall some basic facts from
algebraic number theory (see, for example, Stewart nd Tall, 1979).

An algebraic integer is a root of an equation of the form

"l +a=0, 9)

anX" + an_1X
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whereay are integer numbers ara = 1. If @ is a root of the polynomial (9)
which is irreducible, i.e., there is no polynomial of degrae< n with integer
coefficients and the leading coefficient having@s a root, then the other roots of
(9) are called the conjugates @f An algebraic integett > 1 such that each its
conjugater’, o’ # «, satisfiede’| < 1 is called ar5-number

We have (Antoniou and Suchanecki, 2002)

Proposition 2. Lety (r) be the cyclic state of the Hamiltonian H with the spec-
trum of Cantor type with a constant ratio of dissection r. The state) is non-
decaying if and only iL/r is an S-number. Correspondinglyy(r) is decaying if
and only if1/r is not an S-number.

To prove this proposition it is enough to show (Antonital,, 1999; Zygmund,
1968) that the Fourier transform of the spectral meagyré ), which is of the
form

1 [ 1 o
Lym(t) = E/o e™dF(x) = Ze”It kllcos;rtrk*l(l—r) (10)

convergesto 0 or notwhend.is not or is, accordingly, aB-number. The behavior
of (10) ast — oo is, in turn, equivalent to the behavior of the function

o0
ur [ ]cosrur* (11)
k=1

asu — oo (Zygmund, 1968). In this way the proof of Proposition 2 reduces to the
proof that (11) converges if and only if & is not anS-number and can be found
in Salem (1983) (see also Zygmund, 1968).

The S-numbers include all integers> 1. It is also easy to verify that any
number of the form%(p + 4 p? +4q), where p, geN, q < p, is an S-number
(its only conjugate i%(p — /P2 +4q) < 1). For example the golden number
@ is anS-number. On the other hand, none of the irreducible ratio@adfi;th
p, g € N\{1} is an Snumber. In fact such: is not even an algebraic integer
(Stewart and Tall, 1979). Therefore if the ratio of dissection is any irreducible
rational numbek/n < 1/2, wherek andn are integers different from 1, then the
corresponding cyclic state is decaying.

A natural question is whether decaying and nondecaying states can be in
some sense separated. It is surprising that the answer to this question is negative.
This follows from the fact that since the irreducible rationals are dense in IR, they
are also arbitrary close t8-numbers. In other words, for any dissection mate
determining a nondecaying staér ) and any: > 0 one can find a dissection rate
r’ with [r —r’| < g, such that the stat¢(r’) is nondecaying.
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It follows from the above considerations that it is impossible to isolate non-
decaying states associated with Cantor-type sets. On the other hand the decay-
ing states can be separated from nondecaying. In fact we have (Antoniou and
Suchanecki, 2002)

Proposition 3.  For each ratio of dissection r, which determines a decaying state
¥ (r), there iss > 0 such that the nearest ratio of dissectiohwhich determines
a nondecaying state (r') is at the distant larger tha#.

In the proof of the above proposition we use the fact that the s&mimbers

is closed (Salem, 1983). Now, letbe a ratio of dissection which determines

a decaying state. Sinc# does not belong to the set &numbers, there is a
neighborhood, i.e., some numberss such thatx < Fl < B, and such that the
interval @, 8) has empty intersection with the claSsThis implies that the rate

of dissectiorr is separated from the nearest ratio of dissection of a nondecaying
state by some positive numbge= §(r).

2. CONCLUDING REMARKS

Proposition 2 shows how inappropriate the computational modeling of decay-
ing and nondecaying states can be. In the case of Hamiltonians with fractal spectra
the construction of decaying states amounts to the construction of a Cantor-type
set with a given ratio of dissection. According to Proposition 3 it is possible to
construct such decaying statg§ ) for which the distancé of r from the nearest
inverse of arS-number is within the computing accuracy. However any construc-
tion of a nondecaying stat¢(r) for whichr has an infinite dyadic expansion
is completely unreliable. The reason is that we cannot perform computations on
numbers with infinite dyadic expansion. Therefore any truncation of the dissection
rate give us, in general, a decaying state instead. Physically speaking any finite
approximation of such nondecaying state is a decaying state. Only in the infinite
limit we obtain non decay. Moreover the possibility of construction of decaying
states is also rather theoretical because very little is known about the localization
of S-numbers.
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