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We study Hamiltonians with singular spectra of Cantor type with a constant ratio of
dissection. The decay properties of the states in such systems depend on the nature of
the dissection rate that can be characterized in terms of the algebraic number theory. We
show that in spite of simplicity of the considered model the computational modeling of
nondecaying states is in general impossible.
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1. INTRODUCTION

Singular spectra were regarded for a long time as “unphysical” and neglected.
This situation has changed dramatically in the last decades. Nowadays it is easy
to find genuine “physical” systems for which singular spectra not only appear
but they are even generic (Antoniouet al., 1998, 1999; Antoniou and Shkarin,
2001; Antoniou and Suchanecki, 2000; Avron and Simon, 1981a,b; Bellisard,
1982; Damaniket al., 2000; del Rioet al., 1994; Jitomirskaya and Simon, 1994;
Pearson, 1978). The simplest of them are Cantor-like (or fractal) sets which we
study in this paper. Cantor-type sets are easier tractable than the other singular sets.
There is a simple recursive procedure of the construction of Cantor sets and many
theoretical results about their nature. Cantor spectra in spite of their simplicity
exhibit, however, all the complexity of the behavior of quantum systems with
singular spectra and the property of decay in particular.
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The decay of a quantum system depends on the nature of its spectrum. If the
Hamiltonian has point spectrum then each state is nondecaying. On the other hand
an easy consequence of the Radon–Nikodym theorem is that if the Hamiltonian
has an absolutely continuous spectrum then each state is decaying (Weidmann,
1980). If the Hamiltonian consists of both point and absolutely continuous
spectrum then the underlying Hilbert space can be decomposed as a direct sum of
two Hilbert spaces. Each of these spaces reduces the Hamiltonian and one of them
consists only of decaying states while the other only of nondecaying. However,
the spectrum of an arbitrary Hamiltonian does not necessarily consist of these
two parts only. Hamiltonian systems with singular continuous spectra may have
both decaying and nondecaying states. As we have shown recently (Antoniou and
Shkarin, 2001; Antoniou and Suchanecki, 2000) the Hilbert space of an arbitrary
HamiltonianH can also be decomposed on two parts, which reduceH , in such a
way that one Hilbert space consists of decaying states and the other of nondecay-
ing. The division line between decaying and nondecaying states goes through the
singular part of the spectrum, which means that singular spectra may behave like
point spectra but may also behave as absolutely continuous spectra.

In this paper we restrict our study to the simplest class of singular spectra.
We study Cantor-type sets with constant ratio of dissection (Salem, 1983), which
provide constructive examples of fractal spectra and show strict connections with
algebraic number theory. It is therefore surprising to learn that the possibility to
construct nondecaying states in such systems is only theoretical. We clarify this
point below. First, however, let us recall the basic notions and facts.

The pure states of a quantum mechanical system are wave functions regarded
as elements of a separable Hilbert spaceH in the von Neumann formulation (Von
Neumann, 1955) of quantum mechanics. The time evolution of a wave function
ψ ∈ H is governed by the unitary group

Ut = e−i t H , t ∈ R,

onH, which is the solution of the Schroedinger equation

∂tψ = −i Hψ, h = 1.

The HamiltonianH is a self-adjoint operator onH.
A (pure) stateψ ∈ H is called adecaying stateif its survival amplitudedecays

asymptotically,t →∞
〈ψ, Utψ〉 =

∫
R

e−iλt d〈ψ, Eλψ〉 → 0,

where{Eλ} is the spectral family ofH . Thesurvival probability, i.e., the probability
that at timet the stateψ has not yet decayed is

p(t)
df= |〈ψ, Utψ〉|2.

For any given stateψ ∈ H we denote byF(λ) the spectral distribution
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function:

F(λ) = 〈ψ, Eλψ〉, for λ ∈ R.
It can be shown (Weidmann, 1980) that each stateψ can be uniquely decomposed as

ψ = ψp+ ψsc+ ψac

in such a way that the corresponding spectral distribution functionFp, Fsc, and
Fac is discrete, singular, and absolutely continuous respectively. Obviouslyψp is
nondecaying andψac is decaying. It turns out that the singular continuous state
ψsc can be uniquely decomposed further as a sum of two states such that one is
nondecaying and the other decaying (Antoniou and Shkarin, 2001; Antoniou and
Suchanecki; 2000). In fact the whole Hilbert space can be decomposed as a direct
sum of two closed subspaces

H = HD ⊕HND,

called decaying and no-decaying space respectively. Moreover the spacesHD and
HND reduce the Hamiltonian operatorH , which means that the spectral properties
of H can be studied separately and independently on these subspaces.

The decaying states can also be characterized in terms of their spectral mea-
sures as follows:

Proposition 1. Suppose that the spectral measureµwhich corresponds to a state
ψ ∈ H consists only of the singular continuous component and that the support
ofµ is bounded. Let

M1 = M1(ψ) = inf{λ : λ ∈ suppµ} and M2 = M2(ψ) = sup{λ : λ ∈ suppµ}.
The necessary and sufficient condition forψ to be a decaying state is that for each
a, b,0 < a < b < M 2− M1, holds

lim
n→∞

∫ ∞
−∞

χa,b (n (λ− M1))µ(dλ) = b− a

M2− M1
||ψ ||2, (1)

whereχa,b(λ) denotes the characteristic function of the interval[a, b] repeated
mod (M2− M1), i.e., the indicator of the set⋃

k∈Z
[a+ k(M2− M1), b+ k(M2− M1)].

Proof: Let us introduce the linear transformationφ : [0, 2π ] → [M1, M2]

φ(x) = M2− M1

2π
x + M1.
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Since the support ofµ is contained in [M1, M2]∫ ∞
−∞

χa,b(n(λ− M1))µ(dλ) =
∫ φ(2π )

φ(0)
χa,b(n(λ− M1)) dF(λ)

=
∫ 2π

0
χa,b(n(φ(λ)− M1)) dF(φ(λ)), (2)

whereF is the spectral distribution function ofψ . However

χa,b(n(φ(λ)− M1)) = χa′,b′ (nλ),

wherea′ = 2πa
M2−M1

, b′ = 2πb
M2−M1

. Applying to the right-hand side of (2) Theorem
XII, 10.5 of Zygmund (1968) we see that the integral converges to

b′ − a′

2π
(F(φ(2π )− F(φ(0))) = b− a

M2− M1
(F(M2)− F(M1))

= b− a

M2− M1
(F(∞)− F(−∞))

= b− a

M2− M1
||ψ ||2

if and only if

lim
n→∞

∫ 2π

0
einλdF(φ(λ)) = 0. (3)

However∫ 2π

0
einλdF(φ(λ)) =

∫ M2

M1

einφ−1(x)dF(λ) = e−
2π inM1
M2−M1

∫ M2

M1

e
2π inλ

M2−M1 dF(λ).

Replacingn in (3) by M2−M1
2π n and applying (Zygmund 1968) XII, Theorem 10.11

we obtain that

lim
n→∞

∫ M2

M1

einλdF(λ) = 0

if and only if (1) holds.
If the support ofµ in the above proposition is unbounded then the necessary

and sufficient condition forψ to be a decaying state is

lim
n→∞

∫ M2

M1

χa,b (n (λ− M1))µ(dλ) = b− a

M2− M1
||ψ ||2, (4)

for arbitrary −∞ < M1 < M2 < ∞ and 0< a < b < M 2− M1. Indeed, the
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condition is necessary since ifψ is a decaying state then

lim
t→∞

∫ ∞
−∞

eitλdF(λ) = 0.

Therefore, by Lemma 2 of Antoniou and Shkarin (2001) the measure corresponding
to1[M1,−M2] (λ)dF(λ) is decaying, so we can apply (1). Conversely, for a givenε > 0
we can find suchM1 andM2 thatµ(R\[M1− M2]) < ε. By the assumption there
is an N such that| ∫ M2

M1
eitλµ(dλ)| < ε, for t ≥ N. Thus | ∫∞−∞ eitλµ(dλ)| < 2ε

which shows that condition (4) is also sufficient.
Singular spectra may already appear in Hamiltonian systems of the form

− d2

dx2 + V , where the potentialV is an almost periodic function or even whenV is
a uniform limit of periodic functions. Each period in the potential creates a gap in
the spectrum. In result the spectrum of such an operator is in general a Cantor-type
set. ¤

A vast literature has been devoted to study of the classes of potentials that
lead to singular spectra (see, for example, Avron and Simon, 1981a,b; Bellisard,
1982, and references therein). We shall not review these important results here.
Instead, given a Hamiltonian with a specified singular spectrum, we shall study
its properties. Let us, therefore, show first how to correspond a Hamiltonian to a
given spectrum. Suppose that the required spectrumσ is a Borel subset ofR and a
measureµ, which we would like to regard as a spectral measure, is a Borel measure
on σ . In the spectral representation, the Hamiltonian with spectral measureµ is
the multiplication operator

H f (λ) = λ f (λ) (5)

on the Hilbert spaceL2(σ, µ). The spectral projectorsEλ of H are

Eλ f (λ′) =
{

f (λ), 0≤ λ′ < λ

0, otherwise.

The spectral measureµ(dλ) = dF(λ) corresponds to the distribution functionF
associated with the cyclic vectorψ = 1:

F(λ) = 〈ψ, Eλψ〉. (6)

We introduce now an important class of Cantor-type sets which will serve
as the supports of singular measures. To simplify the notation, we restrict our
considerations to the interval [a, b]. Let r be a real number, 0< r < 1

2. In the
first step divide the interval [a, b] into three parts of the lengths proportional
to r, 1− 2r , and r respectively. Then remove the middle open interval. In the
second step divide each of two remaining intervals into three parts of lengths
also proportional tor, 1− 2r , andr respectively. Then remove then middle open
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intervals, and so on. In this way we obtain in thekth step a closed setσk consisting
of 2k disjoint intervals, each one of the length (b− a)r k. Denoteσ = ∩kσk and
observe thatσ is a closed set with points of the form

x = a+ (b− a)(1− r )
∞∑

k=1

εkr
k−1, (7)

whereεk = 0 or 1. Cantor’s ternary set on the interval [0, 1] with pointsx =
2
∑∞

k=1
εk
3k , is obtained by puttinga = 0, b = 1, andr = 1

3.
Let us focus our attention on Cantor-type sets on the interval [0, 2π ] with a

constant ratio of dissection. Therefore each pointx ∈ σ has the form

x = 2π (1− r )
∞∑

k=1

εkr
k−1. (8)

On the setσ define the distribution functionF putting for the pointsx of the form
(8)

F(x) =
∞∑

k=1

εk

2k
.

We extendF on [0, 2π ] putting

F(x) = sup F(y).
y∈σ
y≤x

The functionF is nondecreasing and continuous withF ′(x) = 0 for almost all
x ∈ [0, 2π ] therefore singular.

According to the above prescription we can define a Hamiltonian system on
the Hilbert spaceH of all functions f such that

∫
R | f (x)|2dF(x) < ∞ putting as

H the multiplication operator.
It is easy to see that the function (state) ψ ≡ 1 is a cyclic vector forH , i.e.,

the set of all finite linear combinations ofHnψ, n = 0, 1, 2, . . . , is dense inH.
Therefore, the operatorH , considered as a Hamiltonian onH, has purely singular
continuous spectrum.

We would like to know whether the constructed in the previous section cyclic
stateψ = ψ(r ) is decaying. It turns out that the decay ofψ depends on the ratio
of dissection. In Antoniou and Suchanecki (2002) we have given the full answer
to this question describing the algebraic properties of the ratio of dissectionr that
decide about the decay properties of the corresponding stateψ . We present below
the algebraic characterization of decaying states associated with the Cantor-type
sets with a constant ratio of dissection. First, however, recall some basic facts from
algebraic number theory (see, for example, Stewart nd Tall, 1979).

An algebraic integer is a root of an equation of the form

anxn + an−1xn−1+ · · · + a0 = 0, (9)
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whereak are integer numbers andan = 1. If α is a root of the polynomial (9)
which is irreducible, i.e., there is no polynomial of degreem < n with integer
coefficients and the leading coefficient havingα as a root, then the other roots of
(9) are called the conjugates ofα. An algebraic integerα > 1 such that each its
conjugateα′, α′ 6= α, satisfies|α′| < 1 is called anS-number.

We have (Antoniou and Suchanecki, 2002)

Proposition 2. Letψ(r ) be the cyclic state of the Hamiltonian H with the spec-
trum of Cantor type with a constant ratio of dissection r. The stateψ(r ) is non-
decaying if and only if1/r is an S-number. Correspondingly,ψ(r ) is decaying if
and only if1/r is not an S-number.

To prove this proposition it is enough to show (Antoniouet al., 1999; Zygmund,
1968) that the Fourier transform of the spectral measureµψ (r ), which is of the
form

µψ(r )(t) = 1

2π

∫ 2π

0
eitxdF(x) = 1

2π
eπ i t

∞∏
k=1

cosπ tr k−1(1− r ) (10)

converges to 0 or not when 1/r is not or is, accordingly, anS-number. The behavior
of (10) ast →∞ is, in turn, equivalent to the behavior of the function

u 7→
∞∏

k=1

cosπurk (11)

asu→∞ (Zygmund, 1968). In this way the proof of Proposition 2 reduces to the
proof that (11) converges if and only if 1/r is not anS-number and can be found
in Salem (1983) (see also Zygmund, 1968).

The S-numbers include all integersn > 1. It is also easy to verify that any
number of the form1

2(p+
√

p2+ 4q), where p, qεN, q ≤ p, is an S-number
(its only conjugate is1

2(p−
√

p2+ 4q) < 1). For example the golden number√
5+1
2 is anS-number. On the other hand, none of the irreducible rationalsp

q with
p, q ∈ N\{1} is an S-number. In fact suchp

q is not even an algebraic integer
(Stewart and Tall, 1979). Therefore if the ratio of dissection is any irreducible
rational numberk/n < 1/2, wherek andn are integers different from 1, then the
corresponding cyclic state is decaying.

A natural question is whether decaying and nondecaying states can be in
some sense separated. It is surprising that the answer to this question is negative.
This follows from the fact that since the irreducible rationals are dense in IR, they
are also arbitrary close toS-numbers. In other words, for any dissection rater
determining a nondecaying stateψ(r ) and anyε > 0 one can find a dissection rate
r ′ with |r − r ′| < ε, such that the stateψ(r ′) is nondecaying.
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It follows from the above considerations that it is impossible to isolate non-
decaying states associated with Cantor-type sets. On the other hand the decay-
ing states can be separated from nondecaying. In fact we have (Antoniou and
Suchanecki, 2002)

Proposition 3. For each ratio of dissection r, which determines a decaying state
ψ(r ), there isδ > 0 such that the nearest ratio of dissection r′, which determines
a nondecaying stateψ(r ′) is at the distant larger thanδ.

In the proof of the above proposition we use the fact that the set ofS-numbers
is closed (Salem, 1983). Now, letr be a ratio of dissection which determines
a decaying state. Since1r does not belong to the set ofS-numbers, there is a
neighborhood, i.e., some numbersα, β such thatα < 1

r < β, and such that the
interval (α, β) has empty intersection with the classS. This implies that the rate
of dissectionr is separated from the nearest ratio of dissection of a nondecaying
state by some positive numberδ = δ(r ).

2. CONCLUDING REMARKS

Proposition 2 shows how inappropriate the computational modeling of decay-
ing and nondecaying states can be. In the case of Hamiltonians with fractal spectra
the construction of decaying states amounts to the construction of a Cantor-type
set with a given ratio of dissection. According to Proposition 3 it is possible to
construct such decaying statesψ(r ) for which the distanceδ of r from the nearest
inverse of anS-number is within the computing accuracy. However any construc-
tion of a nondecaying stateψ(r ) for which r has an infinite dyadic expansion
is completely unreliable. The reason is that we cannot perform computations on
numbers with infinite dyadic expansion. Therefore any truncation of the dissection
rate give us, in general, a decaying state instead. Physically speaking any finite
approximation of such nondecaying state is a decaying state. Only in the infinite
limit we obtain non decay. Moreover the possibility of construction of decaying
states is also rather theoretical because very little is known about the localization
of S-numbers.
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